doi: 10. 3969/j. issn. 1002 - 7386. 2021. 07. 001 论著。 # 毛蕊异黄酮调控 TLR4/p38MAPK 通路减轻脓毒症 大鼠心肌损伤的机制研究 刘杰 李萍 高彦霞 吴瑶 【关键词】 毛蕊异黄酮; Toll 样受体 4; 丝裂原活化蛋白激酶; 脓毒症; 心肌损伤; 炎性反应 【中图分类号】 R 631 【文献标识码】 A 【文章编号】 1002 - 7386(2021) 07 - 0965 - 06 Experimental study on the effects of Calycosin on myocardial injury in rats with sepsis by regulating TLR4/p38MAPK pathway LIU Jie LI Ping ,GAO Yanxia et al. Emergency Department ,The Second Affiliated Hospital of Xi' an Jiaotong University Shaaxi Xi' an 710004 ,China [Abstract] Objective To investigate the effects of Calycosin on myocardial injury in rats with sepsis and to explore whether it can regulate Toll-like receptor 4 (TLR4) /mitogen-activated protein kinase (p38MAPK) pathway and its action mechanism. Methods Fifty-four adult SD rats were randomly divided into six groups. The rat models with sepsis were established except for those in normal control group (NC group). After the rat models were successfully established the rats in positive control group (PC group) were injected intraperitoneally with ulinastatin 100kU/kg dissolved in 1ml/100g saline. The rats in low medium and high dose groups (group A B and C) were injected intraperitoneally with 5mg 10mg and 20mg/kg of Calycosin dissolved in 1ml/100g saline , respectively. The rats in model control group (MC group) and NC group were intraperitoneally injected with 1ml/100g saline once a day for a week. After intervention all the rats were sacrificed and the levels of TLR4 TNF-α and NO in myocardial tissue were detected. Hematoxylin-eosin staining (HE) was used to observe the pathological changes of myocardium. Apoptotic index (AI) of cardiac myocytes was measured by deoxyribonucleotide terminal transferase mediated nick end labeling (TUNEL). Real-time polymerase chain reaction (RT-PCR) was used to detect the expression levels of TLR4 and p38MAPK in myocardium. Moreover the expression levels of TLR4, p38MAPK and phosphorylated p38MAPK (p-p38MAPK) in myocardium were detected by Western Blot. Results The levels of TLR4 ,TNF- α ,NO and AI in myocardial tissues in MC group were significantly higher than those in NC group (P < 0.01) ,however ,which in PC group and group A, B, C were significantly lower than those in MC group (P < 0.01), moreover, which in PC group, group B and group C were significantly lower than those in group A (P < 0.01) and which in group C were significantly lower than those in PC group and group B (P < 0.01). The pathological changes of myocardial fibers and cells in MC group were serious however which in PC group and group A B C were significantly alleviated which in group C were the closest to those 项目来源: 陕西省科学技术计划项目(编号: 2017SF-261) 作者单位: 710004 西安市 西安交通大学第二附属医院急诊科 通讯作者: 李萍 ,710004 西安市 ,西安交通大学第二附属医院急 诊科; E-mail: iephpu@ 163. com in NC group. The levels of TLR4 gene and protein ,p-p38MAPK in myocardial tissue in MC group were significantly higher than those in NC group (P < 0.01) ,which in PC group and group A ,B ,C were significantly lower than those in MC group (P < 0.01) ,however ,which in PC group ,group B and group C were significantly lower than those in group A (P < 0.01) which in group C were significantly lower than those in PC group and group B (P < 0.01). **Conclusion** The intraperitoneal injection of Calycosin for the rats with sepsis can control myocardial inflammation reaction ,alleviate pathological changes and inhibit cardiomyocyte apoptosis in a concentration–dependent manner and its action mechanism may be related to the inhibition of TLR4 gene and protein expression and the control of p-p38MAPK pathway. **[Key words]** Calycosin; Toll-like receptor 4; mitogen-activated protein kinase; sepsis; myocardial injury; inflammatory reaction 脓毒症是常见的、严重的全身炎性反应综合征 ,也 是临床上常见的死亡病因。据报道,我国脓毒症的发 病率高 且近年来一直保持着居高不下的态势[1]。有 资料显示 脓毒症可发展为多脏器功能衰竭 病死率高 达 30%~50% 是严重困扰医务工作者的重大疾病之 一[2]。目前临床针对脓毒症患者常用的治疗手段包 括控制感染、早期液体复苏、清除内毒素等,可控制病 情 降低病死率 但仍有部分患者病情进展。心肌损伤 是脓毒症常见的继发症,可削弱心功能甚至诱发心力 衰竭[3]。Toll 样受体 4(TLR4)/丝裂原活化蛋白激酶 (p38MAPK) 通路是炎性反应性疾病经典的信号传导 途径 在炎症环境中该通路被激活 JLR4 高表达 增加 磷酸化 p38MAPK(p-p38MAPK) 水平,诱发组织损伤, 已被证实与脓毒症心肌损伤有关[4-6]。毛蕊异黄酮是 一种常用的化学药品原料,具有抗氧化、保护心脑血 管、舒张血管平滑肌等作用,有研究报道该药物可减轻 心肌损伤[7]。故此推测毛蕊异黄酮可能通过调控 TLR4/p38MAPK 通路减轻脓毒症心肌损伤,但仍缺乏 有力证据 濡深入探讨验证。鉴于此本研究特设计大 鼠对照试验 并将不同浓度毛蕊异黄酮的作用与乌司 他丁做对比 明确该药物对脓毒症大鼠心肌损伤的作 用及可能机制。 ## 1 材料与方法 #### 1.1 材料 1.1.1 动物: 54 只成年 SD 大鼠 $7 \sim 9$ 周龄 ,无特定病原体级 雌 27 只雄 27 只 $180 \sim 220$ g ,购自北京维通利华实验动物技术有限公司 ,实验动物合格证号: $SCXK(\bar{g})$ 2018-0001。 1.1.2 试剂: 毛蕊异黄酮(上海源叶生物科技有限公司 純度≥98%); 乌司他丁(广东天普生化医药股份有限公司); 0.9% 氯化钠溶液(北京高科恒辉技术发展有限公司); 鼠 TLR4、TNF-α、NO 酶联免疫吸附试验(ELISA)检测试剂盒(武汉赛培生物科技有限公司); 苏木素-伊红染色(HE)试剂盒(武汉博士德生物技术有限公司); 脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(TUNEL)试剂盒(美国 Roche 公司); Trizol 试剂(美国 Invitrogen 公司); TLR4、p38MAPK 及 内参β-actin 上下游引物合成(上海生工科技有限公司); 二喹啉甲酸(BCA)蛋白定量试剂盒(北京普利莱基因技术有限公司); 兔抗鼠 TLR4、p38MAPK、p-p38MAPK 单克隆抗体(一抗)(美国 Acadm 公司); 山羊抗兔 TLR4、p38MAPK、p-p38MAPK 多克隆抗体(以酶标记,二抗)(美国 Acadm 公司); 聚偏氟乙烯(PVDF)膜(上海化科实验器材有限公司)。 1.1.3 仪器: 超净工作台(美国 Labconco 公司); 14型台式离心机(德国 Sigma 公司); RM2235型切片机(德国 Leica 公司); DSX1000型光学显微镜(日本Olympus 公司); 7500型聚合酶链反应(PCI) 扩增仪及配套分析软件(美国 ABI 公司); Trans-BlotTurbo型转膜仪(美国 Bio-Rad 公司); GelDocEZ型凝胶成像分析系统(美国 Bio-Rad 公司)。 #### 1.2 方法 1.2.1 分组、建模: 54 只成年 SD 大鼠随机分为 6 组,包括正常对照组(NC)、模型对照组(MC)、阳性对照组(PC)、毛蕊异黄酮低浓度组(A)、毛蕊异黄酮中浓度组(B)、毛蕊异黄酮高浓度组(C),每组 9 只。除正常对照组(NC)外其余均建立脓毒症模型,建模方法:参照文献^[8],方法为盲肠结扎穿孔术,具体操作:戊巴比妥腹腔注射麻醉,腹正中位置做长约 1.5 cm 切口,寻找盲肠,结扎其根部。以 18G 针穿通 2 次,将肠内容物挤出少量。留置 2 cm 皮瓣,还纳盲肠,对腹壁切口逐层缝合,术后常规抗感染、抗休克。NC 组操作大致同上,但无需实施环形结扎和穿孔操作。 1.2.2 药物: PC 组予以乌司他丁 100~kU/kg 溶于 1~ml/100~g 0.9% 氯化钠溶液中经腹腔注射; 干预 $A \ B$ 和 C 组分别予以 $5 \ 10 \ 20~mg/kg$ 毛蕊异黄酮溶于 1~ml/100~g 0.9% 氯化钠溶液中经腹腔注射; MC 和 NC 组均予以 1~ml/100~g 0.9% 氯化钠溶液经腹腔注射。 $1~\chi/d$ 7 1.2.3 心肌组织 TLR4、TNF-α、NO 含量检测: 采用 ELISA 检测。麻醉下处死大鼠 迅速剥离心脏组织 ,取 约 40 mg 心尖周围组织匀浆 ,按照 3 500 r/min 转速离心 10 min ,离心半径为 8 cm。取上清并严格按照 ELISA 试剂盒检测心肌组织 TLR4、TNF-α、NO 含量。 $\bar{x} \pm s$ - 1.2.4 心肌组织病理改变观察和细胞凋亡检测: 采用HE 法观察心肌组织病理改变 具体操作: 同上述方法取心肌组织 固定、包埋、切片、脱蜡和水化,严格按照HE 试剂盒染色, 封片。在400倍光镜下观察心肌纤维和心肌细胞变化。采用 TUNEL 法检测心肌细胞凋亡指数(AI), 具体操作: 严格按照 TUNLE 试剂盒操作,阳性染色为凋亡细胞。光镜下随机选取 10 个不重复视野统计阳性细胞占比,计算均值即为 AI。 - 1.2.5 心肌组织 TLR4、p38MAPK mRNA 表达检测: 采用实时 PCR(RT-PCR) 检测 具体操作: 同上述方法 取心肌组织,液氮冷冻,匀浆后加入 Trizol 试剂 1 ml, 反复研磨。按照 14 000 r/min 转速离心 10 min ,离心 半径为3 cm。以酚-氯仿抽提核糖核酸(RNA),逆转 录。按照说明书配置反应体系 其中 TLR4 上游引物: 5 '-ACTGCTCTGATATGATCGATAGCTAT-3'; 下游引 物: 5'-TCGATAGCTAGATCGATTAGCTATGATCTAG-3',长度 18 bp、20 bp; p38MAPK 上游引物: 5'-TACGCTAGATTTAGCTATAGCTAGGCGAACTC-3 ': 下 游引物:5'-ATCGCTAGATCGATATATCGATCGTAGCT AGCTA-3',长度 20 bp、20 bp; β-actin 为内参,上游引 物: 5'-CTGCTAGATGCTTATAGCTATTAGCTATAGCTA GATCGACTAGT-3';下游引物:5'ATGCCTGAATTCGA TAGCTATAGCTAGATCGACCG-3',长度 20 bp、20 bp。 按照如下流程进行扩增反应 95°C(30 s 预变性) 35 个循环: 95℃(5 s 变性)、58℃(20 s 延伸) ,最后 60℃ - (5 min 持续延伸)。采用配套分析软件确定目的基因的相对表达量,即 $2^{-\Delta\Delta Ct}$ 。 - 1.2.6 心肌组织 TLR4、p38MAPK 蛋白表达和 p-p38MAPK 水平检测: 采用蛋白质免疫印迹法(WB) 检测 具体操作: 同上述方法取心肌组织 ,液氮冷冻 ,匀浆。按照 14 000 r/min 转速离心 10 min ,离心半径为3 cm。取上清液分离总蛋白 ,采用 BCA 试剂盒定量 ,转移至 PVDF 膜。封闭后加入一抗 ,孵育过夜(4℃);加入二抗 ,孵育 2 h(25℃)。显色并采用凝胶成像分析系统扫描 ,分析结果 ,计算蛋白相对表达量和 p-p38MAPK 水平 其中前者为目的蛋白的灰度值与内参β-actin 灰度值的比值 ,后者为 p-p38MAPK 的灰度值与 p38MAPK 灰度值的比值。 - 1.3 统计学分析 应用 SPSS 25.0 统计软件 ,计量资料以 $\bar{x} \pm s$ 表示 ,采用单因素方差分析及 SNK-q 检验 , P < 0.05 为差异有统计学意义。 ## 2 结果 2.1 干预后心肌组织 TLR4、TNF- α 、NO 含量比较 MC、PC、A、B、C 组实验期间分别有 1 只、1 只、1 只、1 只、0 只建模失败 ,建模成功率为 91.11% (41/45) ,无 大鼠意外死亡。干预后 MC 组心肌组织 TLR4、TNF- α 、NO 含量均高于 NC 组(P < 0.01) ,且 PC 组、A 组、B 组、C 组均低于 MC 组(P < 0.01) ,PC 组、B 组和 C 组均低于 A 组(P < 0.01) ,C 组均低于 PC 组和 B 组 (P < 0.01) 。 见表 1。 | 组别 | TLR4(pg/g 湿重) | TNF-α(pg/g 湿重) | NO(pg/g 湿重) | |--------------|--------------------------------------|------------------------|-----------------------------------| | NC 组(n = 9) | 40.08 ± 4.95 | 86.45 ± 10.93 | 0.71 ±0.13 | | MC 组(n = 8) | $205.98 \pm 36.95^*$ | $782.39 \pm 105.56^*$ | $2.69 \pm 0.41^*$ | | PC 组(n = 8) | 89. 22 ± 10. 77* # | $312.38 \pm 61.07^*$ # | $1.36 \pm 0.25^*$ # | | A 组(n = 8) | $125.45 \pm 21.79^{*}$ # \triangle | 510. 33 ± 86. 97* #△ | $1.89 \pm 0.31^{*}$ # \triangle | | B 组(n = 8) | 88. 19 ± 10. 29* #☆ | 310. 29 ± 59. 38* #☆ | 1.32 ±0.23* #☆ | | C 组(n = 9) | 62. 58 ± 9. 12* #△☆▲ | 168.95 ± 29.74* #△☆▲ | 1.01 ±0.22* #△☆▲ | 表 1 干预后心肌组织 TLR4、TNF- α 、NO 含量比较 注: 与 NC 组比较, $^{*}P$ < 0. 01; 与 MC 组比较, $^{\#}P$ < 0. 01; 与 PC 组比较, $^{\triangle}P$ < 0. 01; 与 A 组比较, $^{\Rightarrow}P$ < 0. 01; 与 B 组比较, $^{\clubsuit}P$ < 0. 01 () $^{\clubsuit}$ - 2.2 6 组大鼠心肌组织病理变化 NC 组大鼠心肌组织细胞均匀分布、纤维条理清晰、呈长梭形; MC 组心肌细胞肿胀变形、甚至破裂,大量细胞核固缩深染,心肌纤维严重紊乱、变形; A 组心肌细胞肿胀变形,部分细胞核固缩深染,心肌纤维有明显紊乱、变形; PC 组和B 组部分心肌细胞肿胀变形,少量细胞核固缩深染,心肌纤维有紊乱、轻微变形; C 组少量心肌细胞肿胀变形 较少细胞核固缩深染,心肌纤维有紊乱表现,大多呈长梭形且结构致密。见图 1。 - 2.3 干预后心肌细胞凋亡指数对比 干预后 MC 组心肌细胞 AI 高于 NC 组(P < 0.01), PC 组、A 组、B 组、C 组均低于 MC 组(P < 0.01), PC 组、B 组和 C 组 - 均低于 A 组(P < 0.01), C 组均低于 PC 组和 B 组(P < 0.01)。见图 2 表 2。 - 2.4 干预后心肌组织 TLR4、p38MAPK mRNA 表达对比 干预后 MC 组心肌组织 TLR4 mRNA 表达均高于 NC 组(P < 0.01) ,PC 组、A 组、B 组、C 组均低于 MC 组(P < 0.01) ,PC 组、B 组和 C 组均低于 A 组(P < 0.01) ,C 组均低于 PC 组和 B 组(P < 0.01)。6 组 p38MAPK mRNA 表达对比差异均无统计学意义(P > 0.05)。见表 3。 - 2.5 干预后心肌组织 TLR4、p38MAPK 蛋白表达及 p-p38MAPK 水平对比 干预后 MC 组心肌组织 TLR4 蛋白表达、p-p38MAPK 水平均高于 NC 组(P<0.01) PC 图 2 6 组心肌细胞 AI 检测(TUNEL × 100) 表 2 干预后心肌细胞凋亡率比较 $\% \bar{x} \pm s$ 表 3 干预后心肌组织 TLR4、p38MAPK mRNA 表达比较 $\bar{x} \pm s$ | 组别 | 心肌细胞凋亡率 | | |--------------|------------------------------------|--| | NC 组(n = 9) | 1.56 ± 0.31 | | | MC 组(n = 8) | $42.53 \pm 5.18^*$ | | | PC 组(n = 8) | 20. 20 ± 3. 42* # | | | A 组(n = 8) | $28.02 \pm 4.26^{*}$ # \triangle | | | B 组(n = 8) | 20.07 ± 3.55* #☆ | | | C 组(n = 9) | 11. 36 ± 2. 07* #△☆▲ | | 注: 与 NC 组比较 ,* P < 0.01; 与 MC 组比较 ,*P < 0.01; 与 PC 组比较 ,^P < 0.01; 与 A 组比较 ,*P < 0.01; 与 B 组比较 ,*P < 0.01 组、A 组、B 组、C 组均低于 MC 组(P<0.01) ,PC 组、B 组和 C 组均低于 A 组(P<0.01) ,C 组均低于 PC 组和 B 组(P<0.01) 。各组 p38MAPK 蛋白表达对比差异均无统计学意义(P>0.05) 。见表 4 图 3。 | 组别 | TLR4 mRNA | p38MAPK mRNA | |--------------|-----------------------------------|-----------------------------------| | NC 组(n = 9) | 0.48 ± 0.08 | 0.89 ± 0.15 | | MC 组(n = 8) | $1.36 \pm 0.17^*$ | $0.92 \pm 0.17^*$ | | PC 组(n = 8) | $0.86 \pm 0.12^{*}$ # | $0.90 \pm 0.16^{*}$ # | | A 组 $(n=8)$ | $1.01 \pm 0.15^{*}$ # \triangle | $0.88 \pm 0.18^{*}$ # \triangle | | B 组(n = 8) | 0.88 ± 0.10* #☆ | 0.91 ± 0.17* #☆ | | C 组($n=9$) | 0.60 ± 0.09* #△☆▲ | 0.92 ± 0.16* #△☆▲ | 注: 与 NC 组比较,* P < 0.01; 与 MC 组比较,#P < 0.01; 与 PC 组比较, $^{\triangle}P$ < 0.01; 与 A 组比较, $^{\triangle}P$ < 0.01; 与 B 组比较, $^{\triangle}P$ < 0.01 ## 3 讨论 脓毒症早期多以炎性介质增加为基本改变 机体可释放大量的促炎性因子,包括 TNF-α、白介素-6、TLR4 等,而抗炎性因子如蛋白激酶 C、白介素-4 等则 $\bar{x} \pm s$ 表 4 干预后心肌组织 TLR4、p38MAPK 蛋白表达及 p-p38MAPK 水平比较 | 组别 | TLR4 | p38MAPK | р-р38МАРК | |--------------|-----------------------------------|-----------------|-----------------------------------| | NC 组(n = 9) | 0.12 ± 0.03 | 0.96 ± 0.15 | 0.09 ± 0.03 | | MC 组(n = 8) | $0.99 \pm 0.14^*$ | 0.92 ± 0.13 | $1.20 \pm 0.14^*$ | | PC 组(n = 8) | $0.61 \pm 0.10^{*}$ # | 0.95 ± 0.14 | $0.59 \pm 0.11^*$ # | | A 组(n = 8) | $0.80 \pm 0.11^{*}$ # \triangle | 0.94 ± 0.13 | $0.78 \pm 0.12^{*}$ # \triangle | | B 组(n = 8) | 0.58 ± 0.09* #☆ | 0.92 ± 0.14 | $0.57 \pm 0.10^{*}$ #\$\times\$ | | C 组(n = 9) | 0.23 ±0.04* #△☆▲ | 0.93 ± 0.15 | 0. 26 ± 0. 06 * #△ ☆ ▲ | 注:与NC组比较,*P<0.01;与MC组比较,#P<0.01;与PC组比较,△P<0.01;与A组比较,*P<0.01;与B组比较,▲P<0.01 分泌较少 滩以有效对抗炎性介质的作用 二者平衡被打破 异致过度炎性反应^[9]。研究指出 ,在脓毒症发生后 ,促炎性因子的大量释放可损伤血管内皮细胞 ,进而造成心脏、肾脏等多个重要脏器功能损害^[10]。 TNF-α的大量合成和分泌可诱导 NO 表达上调 ,并通过 NO依赖途径介导心肌组织损伤^[11]。 因此在对脓毒症实施抗心肌损伤治疗时应积极抗炎 ,纠正促炎性因子和抗炎性因子的平衡。 心肌组织中促炎因子含量是反映炎性反应程度的 直接指标 同时也是评价炎性反应损伤情况的重要标 志。本次研究中,干预后 MC 组心肌组织 TLR4、TNFα、NO 含量均远高于 NC 组 PC 组和 3 浓度组均较 MC 组下降 提示乌司他丁和毛蕊异黄酮均可减轻脓毒症 大鼠心肌组织炎性损伤程度,且其作用呈浓度依赖性。 在病理学观察结果中可见 MC 组心肌组织纤维、细胞 均严重改变 PC 组和 3 浓度组均有所减轻 ,且 C 组与 NC 组病理学表现最为接近,提示乌司他丁和毛蕊异 黄酮均可减轻脓毒症大鼠的心肌组织病变,且高剂量 毛蕊异黄酮的作用更佳。毛蕊异黄酮是黄芪的有效成 分之一 黄芪具有益气复脉、活血化瘀、解毒祛瘀的功 效 毛蕊异黄酮也被证实可促使心肌供血恢复 减轻缺 血诱导的炎性损伤[12]。有研究发现 /毛蕊异黄酮可清 除氧自由基、抗氧化应激损伤 还可调节促炎性因子和 抗炎性因子的平衡,控制炎性反应对心肌组织造成的 损伤[13]。本研究还发现 MC 组心肌细胞 AI 显著高于 NC 组 PC 组和 3 浓度组心肌细胞 AI 则较 MC 组显著 降低,且C组明显低于其余3组,提示毛蕊异黄酮可 控制脓毒症大鼠心肌细胞凋亡,且高浓度的作用效果 更佳。 TLRs 是炎性信号转导的门户蛋白 ,TLR4 激活可 持续诱导炎性反应,并协同 p38MAPK 参与脓毒症心 肌损伤的病变过程。本研究 TLR4、p38MAPK mRNA 与蛋白,p-p38MAPK 水平对比结果中显示,MC 组 TLR4 mRNA 与蛋白 pp38MAPK 水平相较于 NC 组均 显著升高 ,PC 组和 3 浓度组相较于 MC 组显著下降, 且 C 组明显低于其余 3 组 推测毛蕊异黄酮可能对脓 毒症大鼠心肌组织 TLR4/p38MAPK 信号通路有调控 作用。在一项脓毒症并心肌损伤发生机制的实验研究 中表明 ,TLR4 能对病原相关分子模式特异性识别 ,刺 激信号转导 并且可介导促炎性介质的合成和释放 诱 发和加重心肌组织炎性损伤[14]。而 p38MAPK 是其下 游重要的炎性反应调控指标,TLR4 被激活后可促进 p38MAPK 的磷酸化反应。p-p38MAPK 则可促进白细 胞的聚集、活化,调节转录因子的活性,促进细胞因子 的合成,并且还可调控炎性反应,通过一系列级联反 应 最终可参与脓毒症介导的心肌损伤。国内外也有 相关报道证实 TLR4/p38MAPK 信号通路的活化在脓 毒症肺损伤、心肌损伤、肾损伤等疾病发生中均积极参 与[15-17] 与此同时 TNF-α、NO 水平增高 从而参与组 织炎性反应损伤,表明在脓毒症治疗中抑制 TLR4/ p38MAPK 信号通路相关因子,下调 TLR4 基因与蛋白 表达 控制 p-p38MAPK 水平对减轻多种脏器结构组织 损伤具有重要的意义。有研究显示,毛蕊异黄酮可通 过抗心肌细胞缺氧诱导的氧化应激和炎性反应从而减 轻大鼠心肌缺血再灌注损伤[18]。另有报道指出,对老 年脓毒症大鼠予以参附注射液治疗可减轻心肌损害, 发挥心肌保护作用,且证实与抑制 TLR4 的活性、控制 炎性因子水平有关[19]。 综上所述 对脓毒症大鼠予以毛蕊异黄酮可减轻心肌组织炎性和病理损伤 减少心肌细胞凋亡 且在一定范围内用药浓度越高毛蕊异黄酮的作用越佳 推测与抑制 TLR4 的活性 降低 p-p38MAPK 水平有关 ,为临床用药的研究提供了新的方向。 #### 参考文献 - 1 喻文 ,罗红敏. 联合生物标志物预测疑似脓毒症危重患者的急性病死率. 中华危重病急救医学 2018 ,30: 628-630. - 2 马兴龙, 汪远方, 杨阳, 等. 严重脓毒症患者临床特征及死亡预测因素分析. 广东医学 2017, 38: 3472. (下转975页) 转移等密切相关[17,18]。本研究通过双荧光素酶报告基因实验证实 FEZ1 是 miR-1260a 的靶基因 ,miR-1260a 可负性调控靶基因 FEZ1 的表达 ,进一步研究发现抑制 FEZ1 的表达可逆转抑制 miR-1260a 的表达对前列腺癌细胞增殖、凋亡、迁移、侵袭的影响。提示抑制 miR-1260a 的表达可通过上调 FEZ1 的表达 ,从而达到抑制前列腺癌细胞增殖、迁移及侵袭的目的 ,诱导细胞凋亡。 综上所述 ,miR-1260a 在前列腺癌中呈高表达 ,并可能通过抑制 FEZ1 的表达促进前列腺癌细胞增殖、迁移及侵袭 ,抑制细胞凋亡 ,为揭示前列腺癌进展及转移的分子生物学机制提供新方向 ,可为前列腺癌的分子靶向治疗提供实验依据。但仍需从动物模型与临床研究分析 miR-1260a 与 FEZ1 对前列腺癌严重程度、治疗效果及患者预后的预判价值。 ### 参考文献 - 1 Catalona WJ ,Richie JP ,Ahmann FR ,et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6 ,630 men. J Urol 2017 ,197: 200-207. - 2 吕光耀,付启忠,刘颖,等. miR-21 在前列腺癌中的表达及抑制其表达对前列腺癌细胞增殖凋亡的影响. 临床和实验医学杂志,2018,17:280-284. - 3 Eichhorn S , Guo H , Mcgeary S , et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 2014 56: 104-115. - 4 Schwarzenbach H ,Nishida N ,Calin GA ,et al. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014 ,11: 145-156. - 5 Said R, Garcia-Mayea Y, Trabelsi N, et al. Expression patterns and bioinformatic analysis of miR-1260a and miR-1274a in prostate cancer tunisian patients. Mol Biol Rep 2018 A5: 2345-2358. - 6 Califano D ,Pignata S ,Pisano C ,et al. FEZ1/LZTS1 protein expression in ovarian cancer. J Cell Physiol 2010 222: 382-386. - 7 陈放. 重组腺病毒介导人 FEZI 基因对前列腺癌细胞株 DU145 生长影响的实验研究. 中南大学 2010. - 8 谢皇 刘怿敏. miR-195 靶向抑制 S6K1 基因对前列腺癌侵袭和转移的影响. 实用医学杂志 2017 33: 3698-3701. - 9 刘骞 朱朝阳 李晓东 ,等. 微小 RNA-214 在前列腺癌组织的表达及 其生物学功能. 中华实验外科杂志 2018 ,35: 761-763. - 10 余勇军 刘修恒 郭佳. 微小 RNA→88-5p 在前列腺癌中的表达及其 对前列腺癌细胞增殖和转移的调控. 中华实验外科杂志 2016 33: 2643-2646. - 11 Latchana N , DiVincenzo MJ , Regan K , et al. Alterations in patient plasma microRNA expression profiles following resection of metastatic melanoma. J Surg Oncol 2018 ,118: 501-509. - Basso D , Gnatta E , Padoan A , et al. PDAC-derived exosomes enrich the microenvironment in MDSCs in a SMAD4-dependent manner through a new calcium related axis. Oncotarget 2017 8: 84928-84944. - 13 王秋菊 宋晓玉. T-eadherin 基因在前列腺癌组织中的表达及其对前列腺癌细胞 DU145 增殖的影响. 中国生物制品学杂志 2017 30: 29-33. - 14 王忠利 李树静 高超. 沉默信息调节因子 1 小干扰 RNA 诱导前列 腺癌细胞 PC3 细胞凋亡. 现代预防医学 2015 42: 2793-2833. - 15 毕学成 蒲小勇 刘久敏 ,等. 转录因子 E2F1 表达对前列腺癌细胞 侵袭能力的影响. 中华医学杂志 2017 97: 2856-2859. - 16 张晋弘 刘俊英 刘健 筹. 口腔鳞状细胞癌中 FEZ1 和 HIF-1α 蛋白表达及预后研究. 天津医药 2015 *4*3: 1311-1314. - 17 顾彧 庄伯乐. 亮氨酸拉链蛋白在宫颈小细胞癌中的检测价值. 中国肿瘤临床与康复 2016 23:531-534. (收稿日期: 2020 - 07 - 22) #### (上接969页) - 3 Kawaguchi R "Hirata N "Tokinaga Y et al. Nitrite administration improves sepsis-induced myocardial and mitochondrial dysfunction by modulating stress signal responses. J Anesth 2017 31:885-894. - 4 王晶晶 杨敬平 济明禄. TLR4 介导的信号通路与脓毒症相关性研究. 临床肺科杂志 2015 20:725-727. - 5 Ashton KJ, Reichelt ME, Mustafa SJ, et al. Transcriptomic effects of adenosine 2A receptor deletion in healthy and endotoxemic murine myocardium. Purinergic Signal 2017, 13: 27-49. - 6 Yang J ,Zhang R ,Jiang X ,et al. Toll-like receptor 4-induced ryanodine receptor 2 oxidation and sarcoplasmic reticulum Ca (2 +) leakage promote cardiac contractile dysfunction in sepsis. J Biol Chem ,2018 , 293: 794-807. - 7 包龙棠. 毛蕊异黄酮对心肌肥厚影响的实验研究. 武汉大学 2017. - 8 黄鑫 涨敏州. 盲肠结扎穿孔术-脓毒症模型研究的金标准. 医学综述 2015 21:392-395. - 9 Ouyang MZ ,Zhou D ,Zhu Y ,et al. The inhibition of MyD88 and TRIF signaling serve equivalent roles in attenuating myocardial deterioration due to acute severe inflammation. Int J Mol Med 2018 ,41: 399-408. - 10 Virzì GM Clementi A Brocca A et al. Endotoxin Effects on Cardiac and Renal Functions and Cardiorenal Syndromes. Blood Purif 2017 44: 314– 326. - 11 Zhang L , Tian Y , Yang J , et al. Colon Ascendens Stent Peritonitis (CASP) Induces Excessive Inflammation and Systemic Metabolic - Dysfunction in a Septic Rat Model. J Proteome Res 2018 ,17:680-688. 12 包龙棠 ,唐其柱. 毛蕊异黄酮对异丙肾上腺素诱导心肌肥厚的影 - 响. 中华生物医学工程杂志 2017 23:89-94. 13 赵海鹏 李小平 維昂昂 等. 手菸异黄酮对 PM2.5 介导炎性反应的 - 13 赵海鹏 李小平 維晶晶 等. 毛蕊异黄酮对 PM2.5 介导炎性反应的作用及其机制. 中国兽医学报 2018 ,38: 2147-2152. - 14 尹海燕, 韦建瑞, 张锐, 等. 脓毒症大鼠心肌细胞 Toll 样受体 4 和炎性因子基因表达的变化及作用机制. 中华危重病急救医学, 2009, 21:488-491. - 15 Yücel G ,Zhao Z ,El-Battrawy I ,et al. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in humaninduced pluripotent stem cell derived cardiomyocytes. Sci Rep 2017 7: 2935. - 16 王敬 陈冠男 启琪 筹. 高迁移率族蛋白 B1、Toll 样受体 4 在脓毒症大鼠心肌组织中表达及意义. 中国老年学杂志,2018,38: - 17 Seo EH, Song GY, Kwak BO, et al. Effects of Glycyrrhizin on the Differentiation of Myeloid Cells of the Heart and Lungs in Lipopolysaccharide-Induced Septic Mice. Shock 2017 48: 371-376. - 18 李春洁 邢晓雪 周正灿 等. 毛蕊异黄酮对大鼠心肌缺血再灌注损伤的保护作用机制研究. 天津中医药 2017 34:341-344. - 19 赵沄 丛燕 、陆一鸣. 参附注射液对老年脓毒症大鼠心肌保护作用的研究. 老年医学与保健 2010 ,16:234-236. (收稿日期: 2020 - 06 - 17)